PaymentsJournal
No Result
View All Result
SIGN UP
  • Commercial
  • Credit
  • Debit
  • Digital Assets & Crypto
  • Digital Banking
  • Emerging Payments
  • Fraud & Security
  • Merchant
  • Prepaid
PaymentsJournal
  • Commercial
  • Credit
  • Debit
  • Digital Assets & Crypto
  • Digital Banking
  • Emerging Payments
  • Fraud & Security
  • Merchant
  • Prepaid
No Result
View All Result
PaymentsJournal
No Result
View All Result

IBM Helps Eliminate Bias in Facial Recognition Training, But Other Faults May Remain

By Tim Sloane
June 28, 2018
in Analysts Coverage
0
11
SHARES
0
VIEWS
Share on FacebookShare on TwitterShare on LinkedIn
IBM

IBM

In a blog yesterday IBM announced that it is releasing two new facial image datasets as part of an effort to establish machine learning training data that is unbiased relative to “. . .skin tones, genders, and ages . . .”:

“1) One of the biggest issues causing bias in the area of facial analysis is the lack of diverse data to train systems on. So, this fall, we intend to make publicly available the following dataset as a tool for the technology industry and research community:

  • A dataset of annotations for over 1 million images to improve the understanding of bias in facial analysis being built by IBM Research scientists. Images will be annotated with attributes, leveraging geo-tags from Flickr images to balance data from multiple countries and active learning tools to reduce sample selection bias. Currently, the largest facial attribute dataset available is 200,000 images so this new dataset with a million images will be a monumental improvement.

  • An annotation dataset for up to 36,000 images – equally distributed across skin tones, genders, and ages, annotated by IBM Research, to provide a more diverse dataset for people to use in the evaluation of their technologies. This will specifically help algorithm designers to identify and address bias in their facial analysis systems. The first step in addressing bias is to know there is a bias — and that is what this dataset will enable.”

A better dataset is certainly a step in the right direction but other issues can also impact the accuracy of facial recognition associated with skin tone and race. For example, the device’s combination of lens, sensor, lighting and angle, combined with skin tone, can impact what the final image for evaluation looks like. This suggests that if no standard for clarity is established some training may be needed using the images perceived by the device itself; a more complex and expensive effort.

Overview by Tim Sloane, VP, Payments Innovation at Mercator Advisory Group

 

11
SHARES
0
VIEWS
Share on FacebookShare on TwitterShare on LinkedIn
Tags: Facial RecognitionIBM

    Get the Latest News and Insights Delivered Daily

    Subscribe to the PaymentsJournal Newsletter for exclusive insight and data from Javelin Strategy & Research analysts and industry professionals.

    Must Reads

    ai phishing

    The Fraud Epidemic Is Testing the Limits of Cybersecurity

    February 6, 2026
    stablecoins b2b payments

    Stablecoins and the Future of B2B Payments: Faster, Cheaper, Better

    February 5, 2026
    Payment Facilitator

    The Payment Facilitator Model as a Growth Strategy for ISVs

    February 4, 2026
    Simplifying Payment Processing? Payment Orchestration Can Help , multi-acquiring merchants

    Multi-Acquiring Is the New Standard—Are Merchants Ready?

    February 3, 2026
    ACH Network, credit-push fraud, ACH payments growth

    What’s Driving the Rapid Growth in ACH Payments

    February 2, 2026
    chatgpt payments

    How Merchants Should Navigate the Rise of Agentic AI

    January 30, 2026
    fraud passkey

    Why the Future of Financial Fraud Prevention Is Passwordless

    January 29, 2026
    payments AI

    When Can Payments Trust AI?

    January 28, 2026

    Linkedin-in X-twitter
    • Commercial
    • Credit
    • Debit
    • Digital Assets & Crypto
    • Digital Banking
    • Commercial
    • Credit
    • Debit
    • Digital Assets & Crypto
    • Digital Banking
    • Emerging Payments
    • Fraud & Security
    • Merchant
    • Prepaid
    • Emerging Payments
    • Fraud & Security
    • Merchant
    • Prepaid
    • About Us
    • Advertise With Us
    • Sign Up for Our Newsletter
    • About Us
    • Advertise With Us
    • Sign Up for Our Newsletter

    ©2024 PaymentsJournal.com |  Terms of Use | Privacy Policy

    • Commercial Payments
    • Credit
    • Debit
    • Digital Assets & Crypto
    • Emerging Payments
    • Fraud & Security
    • Merchant
    • Prepaid
    No Result
    View All Result