PaymentsJournal
No Result
View All Result
SIGN UP
  • Commercial
  • Credit
  • Debit
  • Digital Assets & Crypto
  • Digital Banking
  • Emerging Payments
  • Fraud & Security
  • Merchant
  • Prepaid
PaymentsJournal
  • Commercial
  • Credit
  • Debit
  • Digital Assets & Crypto
  • Digital Banking
  • Emerging Payments
  • Fraud & Security
  • Merchant
  • Prepaid
No Result
View All Result
PaymentsJournal
No Result
View All Result

Creating AI Training Data Using Synthetic Data Techniques

By Tim Sloane
September 4, 2020
in Analysts Coverage, Artificial Intelligence, Data, Emerging Payments
0
0
SHARES
0
VIEWS
Share on FacebookShare on TwitterShare on LinkedIn
Creating AI Training Data Using Synthetic Data Techniques

Creating AI Training Data Using Synthetic Data Techniques

Mercator Advisory Group members first heard about GANs and synthetic data reading Mercator’s machine learning primer published in April 2017. I discussed this in some depth with Arm Insights (now Facteus) in a podcast in July last year. Anyone interested in creating a deepfake using this technology can follow the simple instructions here; the results are amateurish but easy.

Synthetic data and the GAN technology has continued to improve over time and in this article from Fortune, we learn that Amex is creating payment transaction training data using the technique:

“American Express researchers, on the other hand, trained their GANs on internal data that is normally used for tasks like calculating consumer credit scores, so that the software could create its own financial data.

The goal was for the GANs to create fake transactions “that look normal,” said Dmitry Efimov, the vice president of machine learning research for American Express. Data with obvious anomalies, such as multiple purchases of toilet paper in New York City on one day, followed by a lawnmower purchase in Bakersfield, Calif., the next, would be less effective.

Efimov declined to comment about how American Express could specifically use synthetic financial data to improve fraud detection, citing the risk that criminals could use the information for their benefit. But, generally speaking, the more financial data the company has, the more it can improve its cybersecurity systems. 

Other organizations that are researching using GANs to create synthetic financial data include online retailing giant Amazon. In 2018, Amazon published a paper about using the software to create synthetic e-commerce transactions so that the data could eventually be used for “product recommendation, targeting deals, and simulation of future events.”

Researchers at the University of Michigan have also published a paper about using GANs to create fake stock market orders.  That information could be used to help uncover stock market manipulation schemes, explained Xintong Wang, a Ph.D. candidate in the University of Michigan’s computer science department.”

Overview by Tim Sloane, VP, Payments Innovation at Mercator Advisory Group

0
SHARES
0
VIEWS
Share on FacebookShare on TwitterShare on LinkedIn
Tags: American ExpressARM InsightArtificial IntelligenceDeep FakeFacteusMachine Learning

    Get the Latest News and Insights Delivered Daily

    Subscribe to the PaymentsJournal Newsletter for exclusive insight and data from Javelin Strategy & Research analysts and industry professionals.

    Must Reads

    ai phishing

    The Fraud Epidemic Is Testing the Limits of Cybersecurity

    February 6, 2026
    stablecoins b2b payments

    Stablecoins and the Future of B2B Payments: Faster, Cheaper, Better

    February 5, 2026
    Payment Facilitator

    The Payment Facilitator Model as a Growth Strategy for ISVs

    February 4, 2026
    Simplifying Payment Processing? Payment Orchestration Can Help , multi-acquiring merchants

    Multi-Acquiring Is the New Standard—Are Merchants Ready?

    February 3, 2026
    ACH Network, credit-push fraud, ACH payments growth

    What’s Driving the Rapid Growth in ACH Payments

    February 2, 2026
    chatgpt payments

    How Merchants Should Navigate the Rise of Agentic AI

    January 30, 2026
    fraud passkey

    Why the Future of Financial Fraud Prevention Is Passwordless

    January 29, 2026
    payments AI

    When Can Payments Trust AI?

    January 28, 2026

    Linkedin-in X-twitter
    • Commercial
    • Credit
    • Debit
    • Digital Assets & Crypto
    • Digital Banking
    • Commercial
    • Credit
    • Debit
    • Digital Assets & Crypto
    • Digital Banking
    • Emerging Payments
    • Fraud & Security
    • Merchant
    • Prepaid
    • Emerging Payments
    • Fraud & Security
    • Merchant
    • Prepaid
    • About Us
    • Advertise With Us
    • Sign Up for Our Newsletter
    • About Us
    • Advertise With Us
    • Sign Up for Our Newsletter

    ©2024 PaymentsJournal.com |  Terms of Use | Privacy Policy

    • Commercial Payments
    • Credit
    • Debit
    • Digital Assets & Crypto
    • Emerging Payments
    • Fraud & Security
    • Merchant
    • Prepaid
    No Result
    View All Result