PaymentsJournal
No Result
View All Result
SIGN UP
  • Commercial
  • Credit
  • Debit
  • Digital Assets & Crypto
  • Digital Banking
  • Emerging Payments
  • Fraud & Security
  • Merchant
  • Prepaid
PaymentsJournal
  • Commercial
  • Credit
  • Debit
  • Digital Assets & Crypto
  • Digital Banking
  • Emerging Payments
  • Fraud & Security
  • Merchant
  • Prepaid
No Result
View All Result
PaymentsJournal
No Result
View All Result

Artificial Empathy: Recognition Versus Response

By Tim Sloane
April 25, 2018
in Analysts Coverage
0
6
SHARES
0
VIEWS
Share on FacebookShare on TwitterShare on LinkedIn
Artificial Empathy

Artificial Empathy

This article in Information Week is a fun look at how effectively machine learning can become empathetic. The system must not only recognize the user’s emotions but also change how it interacts with the user based on those emotions:

“Merriam Webster’s primary definition of empathy is:

 “The action of understanding, being aware of, being sensitive to and vicariously experiencing the feelings, thoughts and experience of another of either the past or present without having the feelings, thoughts and experience fully communicated in an objectively explicit manner; also: the capacity for this.”

To achieve artificial empathy, according to this definition, a machine would have to be capable of experiencing emotion. Before machines can do that, they must first be able to recognize emotion and comprehend it.

Non-profit research institute SRI International and others have succeeded with the recognition aspect, but understanding emotion is more difficult. For one thing, individual humans tend to interpret and experience emotions differently.

“We don’t understand all that much about emotions to begin with, and we’re very far from having computers that really understand that. I think we’re even farther away from achieving artificial empathy,” said Bill Mark, president of Information and Computing Services at SRI International, whose AI team invented Siri. “Some people cry when they’re happy, a lot of people smile when they’re frustrated. So, very simplistic approaches, like thinking that if somebody is smiling they’re happy, are not going to work.”

Emotional recognition is an easier problem to solve than emotional empathy because, given a huge volume of labeled data, machine learning systems can learn to recognize patterns that are associated with a particular emotion. The patterns of various emotions can be gleaned from speech (specifically, word usage in context, voice inflection, etc.), as well as body language, expressions and gestures, again with an emphasis on context. Like humans, the more sensory input a machine has, the more accurately it can interpret emotion.

Recognition is not the same as understanding, however. For example, computer vision systems can recognize cats or dogs based on labeled data, but they don’t understand the behavioral characteristics of cats or dogs, that the animals can be pets or that people tend to love them or hate them.

Similarly, understanding is not empathy. For example, among three people, one person may be angry, which the other two understand. However, the latter two are not empathetic: The second person is dispassionate about the first person’s anger and the third person finds the first person’s anger humorous.”

The Information Week article even has an example of a bank that implemented an ATM with emotional recognition technology:

“Neither AI nor emotions are one thing. Similarly, there is not just one use case for artificial emotional intelligence, be it emotional recognition, emotional understanding or artificial empathy.

“The actual use case matters,” said Strier. “Depending on the context, it’s going to be super powerful or maybe not good enough.”

At the present time, a national bank is piloting a smart ATM that uses a digital avatar which reads customers’ expressions. As the avatar interacts with customers, it adapts its responses.

‘We can now read emotions in many contexts. We can interpret tone, we can we can triangulate body language and words and eye movements and all sorts of proxies for emotional state. And we can learn over time whether someone is feeling this or feeling that. So now the real question is what do we do with that?’ said Strier. ‘Artificial empathy changes the art of the possible, but I don’t think the world quite knows what to do with it yet. I think the purpose question is probably going to be a big part of what going to occupy our time.’ ”

I would suggest that the bank first utilize machine learning and sensor technology to recognize when criminals are modifying the ATM to capture PIN or card data. After that, they can develop the technology that will make me feel like that ATM is my friend.

Overview by Tim Sloane, VP, Payments Innovation at Mercator Advisory Group

Read the quoted story here

6
SHARES
0
VIEWS
Share on FacebookShare on TwitterShare on LinkedIn
Tags: AIMachine Learning

    Get the Latest News and Insights Delivered Daily

    Subscribe to the PaymentsJournal Newsletter for exclusive insight and data from Javelin Strategy & Research analysts and industry professionals.

    Must Reads

    open banking

    Open Banking Has Begun to Intrude on Banks’ Customer Relationships

    December 5, 2025
    conversational payments

    Conversational Payments: The Next Big Shift in Financial Services  

    December 4, 2025
    embedded finance

    Inside the Embedded Finance Shift Transforming SMB Software

    December 3, 2025
    metal cards

    Metal Card Magnitude: How a Premium Touch Can Enthrall High-Value Customers

    December 2, 2025
    digital gift cards

    How Nonprofits Can Leverage Digital Gift Cards to Help Those in Need

    December 1, 2025
    stored-value prepaid

    How Stored-Value Accounts Are the Next Iteration of Prepaid Payments

    November 26, 2025
    google crypto wallet, crypto regulation

    Crypto Heads Into 2026 Awaiting Its ‘Rocketship Point’

    November 25, 2025
    Merchants Real-Time Payments, swipe fees, BNPL

    The 3 Key Trends That Will Shape Merchant Payments in 2026

    November 24, 2025

    Linkedin-in X-twitter
    • Commercial
    • Credit
    • Debit
    • Digital Assets & Crypto
    • Digital Banking
    • Commercial
    • Credit
    • Debit
    • Digital Assets & Crypto
    • Digital Banking
    • Emerging Payments
    • Fraud & Security
    • Merchant
    • Prepaid
    • Emerging Payments
    • Fraud & Security
    • Merchant
    • Prepaid
    • About Us
    • Advertise With Us
    • Sign Up for Our Newsletter
    • About Us
    • Advertise With Us
    • Sign Up for Our Newsletter

    ©2024 PaymentsJournal.com |  Terms of Use | Privacy Policy

    • Commercial Payments
    • Credit
    • Debit
    • Digital Assets & Crypto
    • Emerging Payments
    • Fraud & Security
    • Merchant
    • Prepaid
    No Result
    View All Result