PaymentsJournal
SUBSCRIBE
  • Analysts Coverage
  • Truth In Data
  • Podcasts
  • Videos
  • Industry Opinions
  • News
  • Resources
No Result
View All Result
PaymentsJournal
  • Analysts Coverage
  • Truth In Data
  • Podcasts
  • Videos
  • Industry Opinions
  • News
  • Resources
No Result
View All Result
PaymentsJournal
No Result
View All Result

Machine Learning Improves AML Compliance at a Reduced Cost

Tim Sloane by Tim Sloane
January 17, 2018
in Analysts Coverage
0
Robots Pandemic machine learning

If You Aren’t Thinking About Applying Robots During the Pandemic, Maybe You Should

3
SHARES
0
VIEWS
Share on FacebookShare on TwitterShare on LinkedIn

Mercator identified highly manual operations as candidates for machine learning in “Now Is the Time to Develop an AI Business Plan Beyond Fraud,” and this article makes a strong case for ML to automate Anti-Money Laundering operations:

“Machine learning has been shown to be particularly useful in conducting suspicious activity monitoring and transaction monitoring, two key AML activities. A common challenge in transaction monitoring, for example, is the generation of a vast number of alerts, which in turn requires operation teams to triage and process the alerts.  ML can teach computers to detect and recognize suspicious behavior and to classify alerts as being of high, medium or lower risk.  Applying rules to these alert classifications can facilitate the automatic closing of alerts, allowing humans to supervise the machines that triage these alerts rather than reviewing all of the alerts manually, and making better use of the time of these experts.

Institutions leveraging ML can reduce their dependency on human operators to perform routine tasks, reduce the total time it takes to triage alerts, and allow personnel to focus on more valuable and complex activities.  There will always be a need for human involvement in the AML process; in fact, hybrid human/AI models and processes are the direction we see the function moving towards and should enable AML transaction monitoring to take a step forward in both the efficiency and effectiveness of alert operations teams.”

Perhaps most interesting from a technological perspective is the recognition that Robotic Process Automation (RPA) and machine learning can support each other when the robotics activity is used to train the machine learning models. Those models can then deliver better capabilities back to the robotics models for improved decision making or reading skills:

“To implement ML as part of a transaction monitoring solution, firms need to get key elements in place.  These include:

  • High quality data. All monitoring systems and analytics, not just ML applications, depend upon high quality data.  Static files such as Know Your Customer data as well as dynamic data on customer transactions held by financial services firms frequently have low completeness ratios in areas such as payment information, along with high error rates.  Profile refreshes, conducted as part of sales and marketing exercises, can update data while increasing customer outreach and identifying cross-selling opportunities.
  • A 360-degree view of the customer. Currently, financial services firms do not have the global freedom to share information about their customers to build a comprehensive network, and they do not formally collaborate on AML initiatives.  Regulators are, however, increasingly leaning toward data sharing between banks.  Over time, as ownership and privacy concerns are addressed, large amounts of transactional data could become available on intrabank data clouds, making a 360-degree view of the customer more feasible.
  • Expertise in financial services and ML. Very few people are experts in both ML techniques and financial services.  As a result, there have been fewer applications targeting financial services problems from start-ups and established vendors, limiting acceptance of ML within the sector.  Firms hiring ML experts can provide the needed financial expertise, if they institute appropriate training and development programs.
  • Straightforward systems and processes. ML is a relatively new technology and there are few established, straightforward processes to follow to implement it.  Without knowing what to look for, teaching systems to detect certain types of financial crime can be tricky.  For example, how does one teach a system to recognize terrorist financing?  There are more established processes for managing fraud, but nothing as comprehensive for terrorist financing, other than name matching against terrorist lists.

Financial services firms are making progress in addressing these challenges and their appetite for automation is increasing rapidly.  Many banks have started implementing business process automation in the form of Robotic Process Automation (RPA). In fact, robotics and AI/ML solutions can exist independently of each other and each can support the other’s capabilities.  Robotics can be used to train AI/ML models and AI/ML models can be used to add decision-making or reading capabilities to robotics models.”

The upshot here is that machine learning can reduce compliance risk through improved AML detection, especially if data is shared between financial institutions, while also reducing costs.

Overview by Tim Sloane, VP, Payments Innovation at Mercator Advisory Group

Read the quoted story here

Tags: AIMachine Learning
3
SHARES
0
VIEWS
Share on FacebookShare on TwitterShare on LinkedIn

    Analyst Coverage, Payments Data, and News Delivered Daily

    Sign up for the PaymentsJournal Newsletter to get exclusive insight and data from Mercator Advisory Group analysts and industry professionals.

    Must Reads

    Electroneum AnyTask; ETN Crypto, sales enablement

    Ethical Financial Selling: The Role of Compliance Technology and Sales Enablement

    February 2, 2023
    direct deposit

    Nacha Launches Campaign to Reach Millennials on the Benefits of Direct Deposit

    February 1, 2023
    Equinix Helps UK-Based Payments Provider Enable Faster, More Reliable Payments Processing

    Equinix Helps UK-Based Payments Provider Enable Faster, More Reliable Payments Processing

    January 31, 2023
    credit card tumbling

    How to Detect, and Prevent, Credit Card Tumbling

    January 30, 2023
    Why Businesses Need to Adopt Real-Time Payments as a Competitive Differentiator

    Why Businesses Need to Adopt Real-Time Payments as a Competitive Differentiator

    January 27, 2023
    faster payments

    Faster Payments Are Set to Revolutionize Modern Digital Payments

    January 26, 2023
    How AI can Help Manage Payments Risk in 2023

    How AI can Help Manage Payments Risk in 2023

    January 25, 2023
    cross-border payments

    How to Implement Effective and Innovative Cross-Border Payment Strategies

    January 24, 2023

    • Advertise With Us
    • About Us
    • Terms of Use
    • Privacy Policy
    • Subscribe
    ADVERTISEMENT
    • Analysts Coverage
    • Truth In Data
    • Podcasts
    • Videos
    • Industry Opinions
    • News
    • Resources

    © 2022 PaymentsJournal.com

    • Analysts Coverage
    • Truth In Data
    • Podcasts
    • Industry Opinions
    • Faster Payments
    • News
    • Jobs
    • Events
    No Result
    View All Result

      Register to download the Equinix report - Dojo Delivers Fast, Reliable and Secure Card Payments to Businesses on Platform Equinix